Please check the examination details be	low before entering your candidate information
Candidate surname	Other names
Centre Number Candidate N	lumber
Pearson Edexcel International GC	SE
Time 2 hours	Paper reference 4PM1/02R
Further Pure Mat	
	mematics
PAPER 2R	
Calculators may be used.	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You must NOT write anything on the formulae page.
 Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ▶

International GCSE in Further Pure Mathematics Formulae sheet

Mensuration

Surface area of sphere = $4\pi r^2$

Curved surface area of cone = $\pi r \times \text{slant height}$

Volume of sphere = $\frac{4}{3}\pi r^3$

Series

Arithmetic series

Sum to *n* terms, $S_n = \frac{n}{2} [2a + (n-1)d]$

Geometric series

Sum to *n* terms,
$$S_n = \frac{a(1-r^n)}{(1-r)}$$

Sum to infinity, $S_{\infty} = \frac{a}{1-r} |r| < 1$

Binomial series

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^r + \dots$$
 for $|x| < 1, n \in \mathbb{Q}$

Calculus

Quotient rule (differentiation)

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{f}(x)}{\mathrm{g}(x)} \right) = \frac{\mathrm{f}'(x)\mathrm{g}(x) - \mathrm{f}(x)\mathrm{g}'(x)}{\left[\mathrm{g}(x)\right]^2}$$

Trigonometry

Cosine rule

In triangle ABC: $a^2 = b^2 + c^2 - 2bc \cos A$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Logarithms

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Answer all ELEVEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

- 1 Find the set of values for x for which
 - (a) 5x 10 > 4x 7

(1)

(b)
$$2x^2 - 11x + 5 < 0$$

(3)

(c) both
$$5x - 10 > 4x - 7$$
 and $2x^2 - 11x + 5 < 0$

(1)

(Total for Question 1 is 5 marks)

2	The point A has coordinates $(-7, -1)$ and the point B has coordinates $(3, 4)$	
	(a) Find an equation of the line that passes through A and B Give your answer in the form $ax + by + c = 0$ where a , b and c are integers.	(3)
	The point C has coordinates $(-3, 7)$	
	Given that k is a constant such that $AB = kAC$	
	(b) find the value of k	(2)
	The point D has coordinates $(3, p)$ where p is a constant.	(2)
	Given that CD is perpendicular to AB	
	(c) find the value of p	
		(3)

3	Differentiate with respect to x	
	$(a) e^{2x} \sqrt{5x - 3}$	(3)
	(b) $\frac{x^3}{\cos 3x}$	(3)

4	The	quadratic	equation
_	1110	quadratic	cquation

$2x^2$	+	4x	+	3	=	0
--------	---	----	---	---	---	---

has roots α and β

(a) Without solving the equation, show that $\alpha^2 + \beta^2 = 1$

(4)

(b) Without solving the equation, find the value of $\alpha^4 + \beta^4$

(3)

(c) Hence form a quadratic equation with integer coefficients that has roots α^4 and β^4

100
1.7.1

P 6 6 3 0 7 A 0 8 3 2

\times
$\otimes \Box \otimes$
XX X XX
$\times \otimes \times$

×2×
$\otimes Q \otimes$
7
×××××
$\times m \times$
XXXXXX
××××××××××××××××××××××××××××××××××××××
× 1 ×
XXXXXX
× titi
XXXXX

XXXXX
∞
002200
XXX
\times
<u> </u>
Z
N T T
NTHIS
NTHIS
N THIS A
N THIS AI
N THIS AR
N THIS ARE
N THIS AREA
N THIS AREA DO
N THIS AREA DO I
N THIS AREA DO I
N THIS AREA DO
N THIS AREA DO NO
N THIS AREA DO NO
N THIS AREA DO NO
N THIS AREA DO NOT
N THIS AREA DO NOT W
N THIS AREA DO NOT WR
N THIS AREA DO NOT WRI
N THIS AREA DO NOT WRIT
N THIS AREA DO NOT WRITE
N THIS AREA DO NOT WRITE
N THIS AREA DO NOT WRITE II
N THIS AREA DO NOT WRITE IN
N THIS AREA DO NOT WRITE II
N THIS AREA DO NOT WRITE IN T
N THIS AREA DO NOT WRITE IN TH
N THIS AREA DO NOT WRITE IN T
N THIS AREA DO NOT WRITE IN TH
N THIS AREA DO NOT WRITE IN THIS
N THIS AREA DO NOT WRITE IN THE
N THIS AREA DO NOT WRITE IN THIS AI
N THIS AREA DO NOT WRITE IN THIS AR
N THIS AREA DO NOT WRITE IN THIS ARE
N THIS AREA DO NOT WRITE IN THIS AR

Question 4 continued

5	A geometric series G has first term 12 and common ratio	$\frac{3}{8}$
---	---	---------------

(a) Find the sum to infinity of G

(2)

(b) Show that the 6th term of G can be written as $\frac{3^6}{2^{13}}$

(3)

The *n*th term of G is u_n

(c) By finding an expression for u_n in terms of n, show that

$$\log_2 u_n = n \log_2 3 - 3n + 5$$

(5)

\sim	***
$\times \times$	$\times \times \times \times$
X	$\bigcirc \otimes$
×	Ŏ.
\approx	\sim
X	
×	\rightleftharpoons \times
\otimes	\otimes \times
\otimes	$\simeq \times$
X	$\times\!\!\times\!\!\times$
×	
×	
×	3
	\ggg
X	\divideontimes
\otimes	$m \times$
\otimes	
×	
X	\Leftrightarrow
S	pprox
×	∞
X.	
×	
\otimes	S
\otimes	\bowtie
×	
×	
X	D
X	****
\otimes	\Longrightarrow
$\langle \langle \rangle$	$\times\!\!\times\!\!\times$
×	$\times\!\!\times\!\!\times$
\otimes	$\times\!\!\times\!\!\times$
S	$\times\!\!\times\!\!\times$
×	$\times\!\!\times\!\!\times$
\otimes	$\times\!\!\times\!\!\times$
X	$\times\!\!\times\!\!\times$
×	$\times\!\!\times\!\!\times$
$\langle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	$\times\!\!\times\!\!\times$
\otimes	$\times\!\!\times\!\!\times$
\otimes	$\times\!\!\times\!\!\times$
$\langle \zeta \rangle$	$\times\!\!\times\!\!\times$
×	$\times\!\!\times\!\!\times$
\otimes	$\times\!\!\times\!\!\times$
X	$\times\!\!\times\!\!\times$
\otimes	$\sim\sim$
X	\rightarrow
X	\mathbf{X}
\otimes	\bigcirc
$\stackrel{\times}{\times}$	Ō
	Z
$\stackrel{\times}{\times}$	
88	$\otimes \times$
\otimes	\cong
\otimes	$\times\!\!\times\!\!\times$
X	
\otimes	
S	J)
×	$=$ \times
XX	\divideontimes
×	$m \times$
\times	5000
~	
\otimes	
\otimes	\leftarrow
*	
	STATS
	ZTHIS
	THIS AI
	THIS AI
	THIS ARE
	THIS AI
	THIS ARE
	THIS ARE
	THIS ARE
	THIS AREA
	VITHIS AREA
	VITHIS AREA
	ATHIS AREA
	VITHIS AREA DO
	VITHIS AREA DO
	ATHIS AREA DO N
	ATHIS AREA DO N
	VTHIS AREA DO NO
	VITHIS AREA DO NOT
	VTHIS AREA DO NOT V
	ATHIS AREA DO NOT W
	VTHIS AREA DO NOT V
	VTHIS AREA DO NOT WR
	THIS AREA DO NOT WRIT
	THIS AREA DO NOT WRIT
	THIS AREA DO NOT WRITE
	ATHIS AREA DO NOT WRITE I
	ATHIS AREA DO NOT WRITE II
	ATHIS AREA DO NOT WRITE I
	ATHIS AREA DO NOT WRITE II
	ATHIS AREA DO NOT WRITE IN TH
	VITHIS AREA DO NOT WRITE IN TH
	ATHIS AREA DO NOT WRITE IN THI
	VITHIS AREA DO NOT WRITE IN THIS
	ATHIS AREA DO NOT WRITE IN THI
	ATHIS AREA DO NOT WRITE IN THIS AI
	ATHIS AREA DO NOT WRITE IN THIS AR
	ATHIS AREA DO NOT WRITE IN THIS AI
	ATHIS AREA DO NOT WRITE IN THIS AREA
	ATHIS AREA DO NOT WRITE IN THIS AR

Question 5 continued	

6	The curve	C has	equation
~	1110 0001 0	~ 1100	

$$y = 4\sqrt{x}$$

The point A on C has coordinates (9, 12)

The tangent to C at the point A meets the x-axis at the point T

(a) Find the coordinates of T

(5)

The normal to C at the point A meets the x-axis at the point N

(b) Find the coordinates of N

(4)

(c) Calculate the area of triangle ATN

(2)

7 Given that

$$\frac{3+\sin^2\theta}{\cos\theta-2}=3\cos\theta$$

(a) show that $\cos \theta = -\frac{1}{2}$

(4)

(b) Hence solve the equation

$$\frac{3 + \sin^2 3x}{\cos 3x - 2} = 3\cos 3x \quad \text{for } 0^{\circ} \leqslant x < 180^{\circ}$$

(4)

8	Liquid drips onto a large horizontal flat cloth, forming a circular stain.	
	The liquid starts to drip onto the cloth at time $t = 0$	
	The area of the stain increases at a constant rate of 1.5 cm ² /s	
	(a) Find, in terms of π , the radius of the stain at time $t = 4$ seconds.	
		(3)
	(b) Find, in cm/s to 3 significant figures, the rate at which the radius of the stain is increasing at time $t = 4$ seconds.	
		(4)

- 9 Given that α is the acute angle such that $\tan \alpha = \frac{2}{3}$
 - (a) find the exact value of $\cos \alpha$

Diagram NOT accurately drawn h cm BDiagram NOT B C

Figure 1

Figure 1 shows a right pyramid with a rectangular base ABCD and vertex E

The rectangular base of the pyramid is horizontal with $AB = 24 \,\mathrm{cm}$ and $BC = 18 \,\mathrm{cm}$.

The diagonals of the base intersect at the point O

The vertex E of the pyramid is vertically above O such that

$$AE = BE = CE = DE = 17 \text{ cm}$$

The height of the pyramid is h cm.

(b) Find the value of h

(3)

(1)

The size of the angle between the plane *EBC* and the plane *ABCD* is θ°

(c) Show that $\tan \theta^{\circ} = \frac{2}{3}$

(2)

The point P is the midpoint of EB and the point Q is the midpoint of EC

(d) Find the size, in degrees to one decimal place, of the angle between the plane OPQ and the plane BCQP

(4)

\sim	\times
-88	\Box
\times	9 00
-88	
\times	
\times	∞
\times	\leftrightarrow
\times	
\times	
\otimes	~ ××
\times	\times
\otimes	
	XXXX
\otimes	2 ×
\rightarrow	~ ~~
\times	$\bowtie \bowtie$
	90 00
	Un:
\sim	
\otimes	
-88	20 XX
-88	
\times	
\otimes	$\times\!\!\times\!\!\times$
\times	****
\otimes	$\times\!\!\times\!\!\times$
\times	XXX -
-88	XXX -
\times	****
\times	××× -
\times	
$\langle \rangle \rangle$	~~~~
\otimes	
\times	XXXX -
88	
\times	
\times	
\times	
\otimes	
\otimes	$\succeq \!$
\times	$oldsymbol{\odot}$
- XX	XXXX
\otimes	Z.X.
-88	
\otimes	$\Xi \otimes$
\times	
\sim	
	\sim
\otimes	
	\mathbb{R}^{\times}
\otimes	
\times	
\times	2 ×
\otimes	
\otimes	
	ZIMTW
	IN THIS A
	IN THIS AR
	IN THIS ARE
	IN THIS ARE
	IN THIS AREA
	IN THIS AREA DO
	IN THIS AREA DO NO
	IN THIS AREA DO NOT
	IN THIS AREA DO NOT
	IN THIS AREA DO NOT W
	IN THIS AREA DO NOT WR
	IN THIS AREA DO NOT WRI
	IN THIS AREA DO NOT WRIT
	IN THIS AREA DO NOT WRI
	IN THIS AREA DO NOT WRITE I
	IN THIS AREA DO NOT WRITE IN
	IN THIS AREA DO NOT WRITE I
	IN THIS AREA DO NOT WRITE IN
	IN THIS AREA DO NOT WRITE IN
	IN THIS AREA DO NOT WRITE IN THI
	IN THIS AREA DO NOT WRITE IN THIS
	IN THIS AREA DO NOT WRITE IN THI
	IN THIS AREA DO NOT WRITE IN THIS
	IN THIS AREA DO NOT WRITE IN THIS AR
	IN THIS AREA DO NOT WRITE IN THIS AF
	IN THIS AREA DO NOT WRITE IN THIS AR

Question 9 continued	

Diagram NOT accurately drawn

Figure 2

Figure 2 shows part of the curve C_1 with equation $y = \sin x + 1$ and part of the curve C_2 , with equation $y = \cos x + 1$

As shown in Figure 2, C_1 and C_2 intersect at the point A and at the point B

(a) Find the exact value of the x coordinate of A and the exact value of the x coordinate of B

The shaded finite region R_1 shown in Figure 2 is bounded by C_1 and C_2

The shaded finite region R_2 shown in Figure 2 is bounded by the x-axis, C_1 and C_2

(b) Use calculus to find the ratio

area of R_1 : area of R_2

Give your answer in the form $a: \left(\frac{\pi\sqrt{2}}{b} - c\right)$ where a, b and c are integers.

/		1
1	V.J	П

|
 | |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|--|
|
 | |

\times

$\times \infty$
\times

XX 55 XX
$\times\!\!\times\!\!\times\!\!\times$
\times m \times
\times
\times

D
OO 11 OO
XX 20X

- (XXXXXX)

ŏ
2
$\times \overline{\circ} \times$
\times
XXXXXXX
\times
TE IN
TE IN
TE IN
TE IN THIS
TE IN THIS
TE IN THIS A
TE IN THIS AR
TE IN THIS AR
TE IN THIS AR
TE IN THIS AREA
TE IN THIS AREA D
TE IN THIS AREA DO
TE IN THIS AREA DO
TE IN THIS AREA DO N
TE IN THIS AREA DO NO
TE IN THIS AREA DO NO
TE IN THIS AREA DO NOT
TE IN THIS AREA DO NOT W
TE IN THIS AREA DO NOT W
TE IN THIS AREA DO NOT WR
TE IN THIS AREA DO NOT WRI
TE IN THIS AREA DO NOT WRI
TE IN THIS AREA DO NOT WRITE
TE IN THIS AREA DO NOT WRITE I
TE IN THIS AREA DO NOT WRITE IN
TE IN THIS AREA DO NOT WRITE IN
TE IN THIS AREA DO NOT WRITE IN T
TE IN THIS AREA DO NOT WRITE IN TH
TE IN THIS AREA DO NOT WRITE IN THI
TE IN THIS AREA DO NOT WRITE IN THIS
TE IN THIS AREA DO NOT WRITE IN THIS
TE IN THIS AREA DO NOT WRITE IN THIS A
TE IN THIS AREA DO NOT WRITE IN THIS AR
TE IN THIS AREA DO NOT WRITE IN THIS AI
TE IN THIS AREA DO NOT WRITE IN THIS AR

Question 10 continued	
	••
	••

Diagram **NOT** accurately drawn

Figure 3

Figure 3 shows triangle OAB with $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$

The point C lies on OB such that OC: CB = 2:1

The point M is the midpoint of CB and the point N is the midpoint of AC

The lines AM and NB intersect at the point P

(a) Using a vector method, find \overrightarrow{OP} as a simplified expression in terms of **a** and **b**

(9)

The point Q is the midpoint of AB

(b) Using a vector method, show that C, P and Q are collinear.

(4)

(Total for Question 11 is 13 marks) TOTAL FOR PAPER IS 100 MARKS	_

